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and Bernsrd E. Curmmingham .

SUMMARY

An approximate theory is developed for predicting the rate of heat
transfer to the stagnation region of blunt bodies in hypersonic flight.
Attention is focused on the case where wall temperature is small compared
to stagnation temperature. The theoretical heat-transfer rate at the
stagnation point of a hemispherical body is found to agree with available
experimental data. The effect of yaw on heat transfer to a cylindrical
stagnation region is treated at some lengbth, and it is predicted that
large yaw should cause sizable reductions in heat-transfer rate.

INTRODUCTION

It has been suggested (see refs. 1 and 2) that blunting or rounding
the leading edges of wings and bodies might substantially alleviaste aero-
dynamic heating of these regions in hypersonic flight. There is, of
course, the added advantage that round leading edges are structurally
more practicel than sharp leading edges, especlally when the problem of
absorbing heat is considered. Another consequence of blunting msy be
increased pressure drag. In the case of ballistic vehicles, this conse-
quence is often an advantage (see ref. 1). In the case of glide vehicles,
however, or more generslly any vehicles required to operate for sustained
periods in more or less level hypersonic flight, increased drag may be
viewed as & disadvantage.

Now, to be sure, rounding or blunting the nose of & body does not
always increase drag. Indeed, smsll smounts of blunting may reduce the
drag of a body (see, e.g., refs. 3 and 4). The same, however, cannot be
said for blunting the leading edge of a wing. Even small blunting causes
& sizable increase in drag. It is nstural, then, to look for methods of
minimizing this drag penaelty, and the possibility of yawing or sweeping
the leading edge comes to mind. Impact pressures should be, according to
simple-sweep theory, decreased in proportion to the cosine squared of the
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angle of sweep; hence, as is intuitively obvious, large sweep should

substantially reduce the drag penslty due to blunting. In view of thils
possibility it is important to inquire of the effect of yaw or sweep on
heat transfer to a blunt leading edge. . _

The purpose of this paper is to investigate theoretically the heat
transfer to the stagnation regions of bodies in hypersonic flight, includ-
ing the effects of yaw, by a simplified method which is sulted to take
account of real gas effects such as dissociation. This method, which was
previously given limited distribution, is used along with recent estimates
of transport properties for high temperature alr, and the solutions are_.
compared with some heat transfer results for blunt shapes.

SYMBCLS
A,B,C,}
D,E,F, integration constants
G,..
Cp specific heat at constant pressure, ft-lb/slug °r
h specific enthalpy, ft-1b/slug -
k coefficlent of thermal conductivity, ft—lb/ft—sec °r
M Mach number, dimensionless
n exponent of tempersture in thermal conductivity and viscosity

functions (see eqs. (37) and (38)), dimensionless

Nu Nusselt number based on a length éRb and stagnatlon tempera-
ture conditions, dimensionless. :

P static pressure, 1b/ft2 (unless otherwise specified)
Pr Prandtl number, dimensionless

a heat flux per unit areas, ft-1b/ft2=sec

a(0) heat flux per unit area at zero yaw, £t-1b/ft2-sec
a(n) heat flux per unit area at yaw angle A, ft-1b/ft2-sec

R gas constant, £t-1b/slug °R o - . 3

L%
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Ry, radius of curvature of body at the stagnation point, £t

Rg radius of curvature of the shock wave at the stagnation stream-
line, £t

Re Reynolds number, based on twice the radius of curvature of the

body at the stagnation point, dimensionless

r,0,9 spherical coordinstes, feet, degrees, and degrees, respectively

T static temperature, °r
Ty, temperature of the body, °R
Tq temperature at the interface, x = 0, with body at zero yaw, °r

To(k) tempergture at the interface, x = 0, with body at angle of yaw

A, °R
Tn recovery temperature, °rR
Ty stagnastion tempersture, °r
Uy stream velocity, ft/sec

u,v,w velo;ity components in the x, y, and z directions, respectively,
ft/sec

u,v velo;ity components in the x and r directions, respectively,
ft/sec

X,y,z Cartesian coordinates, £t

X,r cylindrical coordinates, £t
o flow deflection angle, deg
) T - Ry Xp - X
€ dimensionless coordinate, —-EE_— or _-ﬁg-—
v ratio of specific heat at constant pressure to specific heat at

constant volume, dimensionless
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(Pe/Pw) + 1

a function of density change across a shock wave, (070 T’
ps poo =

dimensionless

angle of yaw, deg

density, slugs/cu.ft

T
JC kdT, a function of the coefficient of thermal conductivity

and of temperature, ft-lb/ft-sec (unless otherwise specified)

acute angle of shock wave relative to stream velocity vector,
deg

coefficient of viscosity, slugs/ft sec

coefficient of viscosity at temperature T, slugs/ft sec

coefficient of viscosity at temperature TO(A), slugs/ft sec

Subscripts

conditions Jjust behind shock wave an the stagnation stresmline
conditions at the stagnation point of the body

conditions at the interface between regions 1 and 2 on the stag-
nation streamline (see sketch (b))

conditions in the free stream



NACA TN h22g 5
Superscripts

! first derivative with respect to the x coordinate

" second derivative with respect to the x coordinate

THEORY

General Equations in Cartesian Coordinstes

The analysis proceeds from the equations of momentum, continuity,
energy, and state for continuum fluid flow. The x, ¥y, and z momentum
equations are, respectively,

p%w(ugu;”g;w% - gg[ (.& - ]
HGRARCRIIE
i[ %H (1)

ov ov av ov _.%_223 Su ov , ov
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L+ ( +v Sy =_B_p_gi[u ou , oV é‘i>1+
_ e g_ + ? 3 oz Bx By dz
o) BW
2$< ) [ * & -_l+
3 [, (o éw_] - 3
ay[p az+ay) (3)

The continuity equation is

p, o S ] -
S; + S}—{-(Du) + g;(@v) + SE(DW) =0 ()

and the energy eguation 1s

3, ah 3p __ ) SO
( )( + u 3% 8y‘+waz
d [, 3 A (Y Y
23 (Y, 2 (w2 T 2<_ 2 .z>
5x<k8x>+ay kay>+az kaz +u[ dx * dy. *
v . 2
v, _2(u. g».r.)
<> <3.Y > >+ 5 " g_> 3 Bx+ay+az ]

while the equation of state is taken in the form

p = p(p,T) (6)
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Derivations of the momentum and energy equations are given in numerous
sources (see, e.g., refs. 5, 6, and 7). Note that the coefficients of
viscosity and thermal conductivity, and the heat capacity have been

twmantad oo veariehlaa
treated as variables. It is intended that by so dolng a more accurate

solution will be obtained for hypersonic flows with their characteristi-
cally large temperature and pressure gradients.

Let us now consider the particular flows of interest in this paper,
namely, those in the region of a stagnation point.

Model of Flow and Method of Analysis

It is instructive in setting up the model to consider the qualitative
aspects of temperature and veloclity variations in the flow along the stag-
nation streamline. Restricting the analysis to steady hypersonic flow,
that is Mysin 5 >>1, we will assume that the surface temperature is low
compared to the stegnetion temperature of the sir. This assumption seems
guite reasonsble since practical surface materials will probably be
destroyed if surface temperatures are allowed to approach stegnation
temperature. It will be assumed further that the Reynolds number of the
flow is large enough so that heat conduetion and viscous shearing in the
shock process is distinct and separate from the corresponding phenomena
occurring in the boundary layer adjacent to the surface of the body.
Accordingly, temperature and velocity should vary along the stagnation
streamline similar to the menner shown in sketch (a).
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Temperature
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Shock Body
wave surface

Sketch (a)
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There is an abrupt and large increase in tempersture and decrease in
velocity of the air as it passes through the bow shock. Proceeding from
the shock in the directiom of the body, temperature continues to increasse
slowly while the velocity decreases slowly towards zero. Near the surface
of the body, the air temperature ceases to increase and, in fact, begins
to fall off steeply in the direction of the body tempersture. The veloc-
ity of the flow must, of course, be close to zero in this region.

On the basis of these observations the following simplified model is

proposed and employed throughout this study of heatl transfer in a stegns-
tion region.

Region | v,y Region 2

Stagnation
streamline
Uy
=Xg o T.l, x
Detached Interface
shock wave between regions
fand 2

s

Region [— I[ncompressible, nonviscous flow

Region 2— Low-velocity, compressible, viscous flow

Sketch (b)

Since M, is large compared to 1, Mg 1is substantially less than 1 and
the detached shock wave is located a relatively short distence shead of
the body surface (i.e., (xg + x)/Rp, < <1). The flow between the shock
wave and the body surface is divided into two regions. Region 1 is taken
a8 a domain of essentislly nonviscous, non-heat-conducting, incompressible
flow while region 2 is teken as a domein of very low speed, but compres-
sible, viscous, and heat-conducting flow. It is anticipated further that
in region 2 the u and v components of velocity will be very small. The
component of velocity w due to yaw may, of course, take on rather large
values.

Now it may be demonstrated with equations (1) and (2) that 3°p/dy"
becomes relatively independent of x along the stagnation stresmline in
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the 1imit as the disturbed £flow extends only a short distance away from
the body. Inasmuch as this is the type of flow of interest here, it will
be assumed throughout this analysis that 0%p/dy® 1is essentially con-
stant along the stagnation streamline between the shock and the body.

With these assumptions, the derivative with respect to y of the
¥y wumomentum equation ylelds a differential equation that becomes tractable,
both in regions 1 and 2, when terms that vanish in the neighborhood of the
stagnation streamline are dropped. Approximste solutions to these simpli-
fied y momentum equations are found for the u velocity along the stag-
nation streamline in region 1, and for the derivative of thils wvelocity
along the stagnation streamline in region 2. The constants appearing in
these solutions are determined by matching the boundary conditions at the
shock wave and at the surface of the body, and by matching flow conditions
at the interface. This procedure fixes the locations of the shock wave
and interface relatlve to the body.

The energy equation is simplified in an analogous msnner, and solu-
tions valid in the neighborhood of the stagnation streamline are found
for regions 1 and 2. The rate of heat transfer per unit ares to the
stagnation region of the body follows from the solutlion to the energy
equation for region 2.

Let us see how these thoughts apply in the case of a two-dimensionsal
stegnation region.

Heet Transfer to a Cylindricel Stagnetion Region

Zero yaw.- This problem has been treated for incompressible flow by
Howarth (ref. T) and more recently for the compressible flow by Cohen
and Reshotko (ref. 8). One reason for re-investigating the matter here
is to obtain compressible f£flow solutions which can be extended with rela-
tive ease to the case of a yawed cylinder. In addition it was desired
to obtain solutions which may be better suited to account for real gas
effects, such as dissociation.

To proceed, then, the stagnation streamlines are taken to lie in the
x-2 Dplane. The origin of the coordinate system is at the interface
between regions 1 and 2, snd the shock-wave and body-surface locations in
this plane are -x; and x},, respectively (see sketch (b)}). For the case
of zero yaw, the 2z component of velocity and all derivatives with
respect to =z are, of course, identically zero.

First a solution will be found to the steady-state ¥y momentum
equation near the stagnation streamline in region 1. Since the flow is
assumed incompressible end nonviscous in this region, equation (2)
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simplifieé to

ey 1 (7

ox Jdy P oy

Differentiating equation (7) with respect to y there is obtained

D (3w, dudv av>2 v _ 13 (8
v dy \ox + oy ox + 5; v S;E TP dy> (8

On the stagnation streamline v is identically zero and, therefore, dv/dx
is also zero. In addition, the continuity equation (eq. (4)) becomes, for
incompressible, two-dimensional flow

-g%.l.g—;r-:O .. (9)

Using this informstion with equation (8), one obtains
-1 .ai + <@>2 = - l'. —6_22 (lo)
3x®  \ox P ay®

Treating 0%p/dy® as a function of y only, and noting that equation (10)
becomes a total differential equation along & line ¥y = constant, yields &
general solution for veloclty along the stagnation streamline

u = Ae®* 4 Be =¥ (11)

where the constants A, B, and C are related by

hane2 - L% -(12)
paZ_,,- ’
¥

Note that the constants may be real or imaginary, depending on the bound-
ary conditions.
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Now it 1s anticipated that the velocity u will very nearly vanish
at the interface x = 0 (i.e., in the sense that uo/uS << 1}); hence B
will be approximstely -A, and the corresponding epproximate solution for
velocity is?

u = 2A sinh Cx (13)

To the same order of approximation, the second derivative of velocity at
the interface, uy", also vanishes. The product 2AC i1s just the velocity
derivative at the interface and can be evaluated from equations (10)

and (13), thus

2AC = up' =% |- %-——— (14)

Note that the negative root correctly describes the flow in the coordi-
nate system of sketch (b), since velocity decreases with incressing x.

Consider next the steady-state y momentum equation near the stagna-
tion streamline in region 2. In this domain viscous terms must, of course,
be retained and thus the derivative of equation (2) with respect to ¥y
yields ) ' ’

v, L A, v o, a_v>

3xdy dy 3x ox dy o dy° vy dy oy dy

33 o 32 [ du v 32 ( dv 3% du .
= - =22 - 3+ = P2 = gu , Sv
7 33 LMt ayﬂ AN ay>+ayax[“ ay ax>] (15)

Now close to the surface of the body the left-hand side of this expres-
sion is negligible and the right-hand side simplifies so that the equa-
tion may be written (see Appendix A)

3 / R\ _ %
>\ ax2> Tt 5 (16)

1In the limit of zero boundary-layer thickness, this solution is
exactly the one to which equation (11) reduces.
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Along the stagnation streamline this equation integrates to

L P

ax2=-a—y§x+]1 (17)

2
The constant D is zero since d-u/dx = u." = O at the interface (x = 0
Near the surface of the body, equation (17) can be integrated to obtain

TN ST (18)

In order to satisfy the boundary condition at the body surface

§l> = (STU;) = 0, 1t follows from equations (18) and (1) that
b

02 = (19)

d%p
-p ——
3y=
Now p and sz/ayz can be evalusted at the shock wave since both are

consldered constent throughout region 1. In Appendix B it is demonstrated
that for two-dimensionel flow ’

) e U 20
———F )
( W2/ (7 - 1)R (

where Rg 1is the radius of curveture of the shock wave in the stagnation
region. Substituting equation (20) in equation (19) we obtein

_x_b_ (78_ >;!_/4,< o Bs 1/2 5 o)
- NEYE]

Reg

where Rey, 1is the free-stream Reynolde number based an 2Ry, twice the
radius of curvature of the body at the stagnation point. Note also that
the effective value of 7, the ratlo of specific heats, at the shock wave
is allowed to vary from the free-stream value. In this way, changes in
internal molecular energy which are manifest at the hJ.gh temperatures
encountered in hypersconic flight can be considered.”
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There remains the problem of solving the energy equation. In
region 1, the energy equation is simplifiled by neglecting 211 the viscous
and heat-conduction terms. Then, for the two-dimensional problem con-
sidered here, equation (5) reduces to

du oT
u—+Cy == 22
ox P 3x (22)
for which the solution is
Ty
04T = 42 (23)
o P T

It can be seen from equation (23) that the interface temperature T, is
approximately the stagnation temperature Ti, since the veloclity at the
interface nesrly venishes. The stagnation temperature is, of course,
given by the integral equation

Tt

YeoR oMo
Lé‘ CpaT = -—Z‘Ji (2k)

cQ

where for very high velocity flow the lower limit of the integral will be
neglected.

Next consider the energy equation in region 2. DProceeding in & man-
ner anslogous to that used in studying the ¥y momentum equation in this
region, we neglect the terms with the factors u, v, du/dx, and dv/dy.
Thus equation (5) becomes simply the heat-conduction equation

SRR

The coefficient of thermal conductivity, k, is considered a known function
of temperature (pressure is essentially comstent). Thus a new function of
temperature, 7, may be defined such that

T
n=f K ar (26)

o
Then equation (25) may be expressed in terms of the function

821_1 —a-aj. .
52 + 52 (27)
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Inasmuch as the body boundary is cylindrical, it 1ls convenient to use the
genersl solutlon to equation (27) in terms of the polar coordinates (%, 6).
Thus

o0

n=A+Blnf+2|:<Cnr +—>cosn6+<Enr + = )sinne:l

n=1
(28)

The origin of the coordinate system is now taken as the center of curva-
ture of the body, and 6 as the acute angle between the radius vector #
and the stagnation streamliine. If a surface temperature is assumed inde-
pendent of the angle 9,2 the solution on the stagnation streamline (6= 0)
reduces to '

= R
q:-nb+BlnRr—b+Z CpF? [ <b> } (29)
n=1

Letting gl =1l + €, where "€ 1is very small compared to unity, and

b
expending equation (29) in a series of ascending powers of e, we obtain
2
n=1p+Gle -5 )+0(ed) (30)

where G 1is the constant C?-f}i 2nRﬁ10%>- It is indicated by this
n=1

equation that 1 varles essentlslly linearly with €, since 62/2 is

negligible compared to € and terms of higher order in € should be

very smell indeed.® Since e = (xb - x)/Rb < <1, equation (30) can be

written

N =g - (g~ M) % (31)

2The dependence of surface temperature on & should be small in the
stagnation region.

31t should be p01nted out that this argument hinges 1mplicitly on_:
the assumption that 1 is a weak function of 6 near the stagnation
streamline.
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According to this expression, the rate of heat transfer per unit area to
the stagnation region of the body is

am-my =l Tl [ ar (32)

Xn Xn Tb

The stegnation-line coordinate x}, is substituted from equation (21),
and the rate of heat transfer becomes

To

- [pig] Ce B BT e o

Ty

A Nusselt number is defined for interface tempersture conditions
using a characteristic length equal to twice the radius of curvature of
the body and a temperature potential of (T, - Ty,); thus

on.' R,
-t (34)
ko(To - Tp)
or, substituting from equation (33) into (3k4)
/4 /2 i/2
6 1 R Re,,
Nu = <_I> ('” 2 k aT (35)
7s - Fo Re, ko(To Tp)

For a relatively cool body in hypersonic flight, it is possible to dis-
regard the lower limit of the integral and the value of body tempera-
ture T, compared to the interface temperature T,.

Note that the solutions given by equations (33) and (35) can be used
for the case where viscosiiy, thermsl conductivity, and specific heat are
arbitrary functions of temperature. For Instance, these functions can be
calculated to inelude the effects of vibrational and dissociationsl molec-
ular energy if the extent to which these energy modes are excited is known
throughout the flow. It is also useful to consider the case where the
specific heat is treated as a constant end the viscosity and thermal
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conductivity as proportionsl to the nth power of temperature. In this

T
case from equation (2k) ( note o w 1, 2>>1
Ty Teo

To _(%By\yz
=- (&) (36)
Noting that
n+l
To To a <‘I‘b/T
1 1 T
T - f k 4T Z f <T—>dT— —
kolTo T, o-Tp i o n 1-m/7,
(37)
and that
/2
T T N2 ey \P/2
R RNE T

it is seen that the expression for Nusselt number (eq. (35)) becomes

n+l
1 5 i/4 Rb>l/2 o n/2 Remlla 1 - (Tb/To>
n+l <7s - I) Rg, (&) M2 (39)

1= (Tp/To)

MNu =

and the rate of heat transfer per unlt ares to the stagnation region of
the body i1s, in terms of free-stream conditions,

- () [pis] @) @) L @

(ko)

These considerations complete the zero-yaw analysis. However, before
undertaking the study of effects of yaw on heat transfer it is appropriate
to make a few remarks. There is the general question of the legitimacy of



()

NACA TN k229 17

the several assumptions underlyling the present trestment of stagnation-
point flows. In order to shed some light on this matter it is undertaken
later in the report to examine the solutions obtained to see whether they
are consistent with these assumptions and with pertinent results obtained
by others. In this regard it is shown that the presumption of a constant
second derivetive of pressure normal to the stagnation streamline yields
solutions for the distance between shock wave and body which are quite
close to observed values. Next, it is demonstrated that, as assumed, the
velocity u 1is negligibly small throughout region 2 under continuum flow
conditions. Then it is shown that the largest of the viscous dissipation
terms neglected in the energy equstion for region 2 is indeed small com-
pared to the hegt-conduction terms. It is found too that the analysis
predicts an amount of heat convected into region 2 which is the proper
order of magnitude to account for the heat transferred to the body.
Finally, it is shown thst under comparable conditions eguation (35) of
thisapaper predicts essentially the same heat transfer as references T
and 8.

In view of these results it would seem that the simplified anslysis
presented here for stagnation-region flows 1s, while on the one hand cer-
tainly epproximste, on the other hand quite capable of predicting useful
information. Accordingly, we proceed to the study of effects of yaw on
heat transfer.

Yaw.- In this case the x dJdirection is normel to and the =z direc-
tion Is parallel to the stagnation line of the body (see plan view,
sketch (c)). Then the 2z component of velocity has a finite value, but
all =z derivatives are agaln zero.

Region | Region 2 &
u.X
c ?
oo’\ o
Ve X‘%’ Body
A R} 7 setached stagnation~
U etache ine
shock wave

interface
between
regions | and 2

(x =0)
Region |— [ncompressible, nonviscous flow

Region 2— Low velocity, compressible, viscous flow

Sketch (c)
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The ¥y momentum equation in region 1, differentiated with respect
to y, takes the same form as equation (10) on the stagnation streamline.
Thus the velocity u 1is again given by the solution

.1/ 13%
us=-z -Eg—y%s:mh()x (1)

The 2z momentum equation for the stagnation streamline in region 1
becomes, on dropping the negligible terms from equation (3),

u ?E =0 (42)
ox
which has the solution
w? = 7 RT M Zsin®)\ (43)

since the transverse component of veloecity is unchanged on passing through
the shock wave.

The energy equation faor the stagnetion streamline in region 1 reduces
to & form similar to equation (22)

Qu ow oT _
Y 3 v Ox * Op Ox © (b4)

which has the solution

(45)

e u? + 7, RT M Zsin®A
deT =
T 2

where again the stagnation temperature Ty 1s given by equation (24).
At the interface where the velocity u is negligible, the temperature
To(A) is given by the solution to

Ty

RT_M_2si
f CodT = Tes °"M°2° sin?A (46)
To()
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which, for a constant heat capacity, CP’ is

To(N) YR
T = Cp M Bcos3\ (&7)

The differentiated y momentum equation for region 2 takes on the
same form on the stagnation streamline as equatlon (16) Bence, the

solution is
EE x2 - /_ 1 aap
E ( B p'o(?\) "'p N (11-8)

and the body stagnetion point coordinate is

2 2p5(A
[x, (M) 1% = _“L(i_ (%9)
9°p
oy=
Now, however, the second derivative of pressure is a function of the
angle of yaw (see Appendix B),

3%p 6p ZU;?coszk
( aya = (50)

(73 - l)Rsa

-pP

so the stagnation-point coordinate is given by

xb a\) - 1\1/4 “’o (7\ 1/2 .
(51)
< ) > Remlfﬁéosllak

In region 2, the solutions to the Zz momentum equation and the energy
equation are considered simultanecusly. The 2z momentum equation simpli-
fies (to the order of this analysis), in the region of the stagnation
gstreamline, to

9 aw o [, ow

el el el Ul Bl (52)
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Similarly, the energy equation near the stagnatlon streamline in regiomn 2
may be written (note that Ow/dy is zeroc by symmetry)

o%n _ <§w 2 -
ax2 + ayg + K ax> =0 (53)

In order to facilitate the solution of equation (52), it is helpful
to observe that the yawed boundary layer, identified with the w campo-
nent of veloclty, resembles the boundary layer on a flat plate. It might
be anticipated then that, Jjust as in the case of the flat plate, the
varigtion of w with x is relatively insensltive to variations of u
with x. In this event equation (52) has the approximate form

Rw 3w
—_— — =0 by
o= " - (54)

The solution is taken in polar coordinates in order to convenlently fit
the boundary condition that w 1s identically zero at the body surface.
Then following the same arguments used in deriving equations (29) and (30),
one cobtains on the stagnation streamline

w =3B 1n _1:% +HZ o [l - (%)m] = I(e-€—22->+0(<-:3) (55__)

where again e=(F/Rp) -1l < < 1l. If second order and higher terms in €
are neglected, the. z component of velocity on the stagnation streamline
becomes, in terms of x/xb, -

whence

(57)

&
&
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If this result is substituted for the last term in equation (53),
the energy equation becomes

9y , o\ _
ax2+ay2+u<§%> 0 (58)

A solution for equation (58) which satisfies symmetry conditions on the
stegnation streamline and also the boundary conditions that 1 and p are
constant along the surface of the body is

2]
- 2n - 2
3(A) = +Bln£.+z fn[l_<ﬁ> ]cosn@-h’:("& =2 _p 2
b Rp 1 Co 7 b \*p (7 Rp-)
n=
(59)
where B 1is a mean value of p in the stagnation region. If equa-

tion (59) is expanded in terms of €, 1 takes the following form on the
stagnation stresmline

- 2
1(A) = M, + J( - %ﬁ - ::02 <<-: + E:-) +0(eB) (60)
o

The constant J 1is evaluated by letting 1 be 1, when € 1is eo=xb/Rb
and is given by the relation

Tlo-le< €o w2
J—-—GO—— l+?>+2€02(l+eo)+... (61)

The rate of heat transfer per unit ares to the stagnation region of the
body at angle of yaw A 1is, from equation (60),

on(A)
dx

a(d) =-

1 pwg2
= R_ - 02 ) (62)
b ‘b 260

b Bp Oe

Substituting equations (26) and (61) into this expression snd neglecting
terms of the order €, compared to 1, one obtains

Too‘) = 2
a(n) = xb%m @b k QT + =2- (63)
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Multiplying by — 2By and substituting from equation (51) ylelds
ko(To - Tb)

2a{N\)Rp _ ( 6 \114( Mo Bp 1/ Rémlrlzcroslk?\

) ko (T - ) AVAERVARANTNGS) Rg/ ko (T, - Tp)

T, (N) _
(i)ﬁ k 4T + “Zf;\> (64)

NP /

For a constent heat capacity it follows from equations (23), (43),
and (47) that ”

T (A) )
T = cos®A
> (65)
W02
—T—O- = 2CPsin27\
J

If, in addition, the thermal conductivity is proportional to the nth
power of temperature, then

N fTO(Mk o cos®ht2 [1 _( T, n+1:}
ko(Tg - Tp) Ty, (n + 1)(1 - By/T) TocosZA
(66)

and

(67)

Pwo® < i\ Pr ein®)\ i Prcos®™) sin®A
= -l_—l— =
2k (T, - Tp) o/1-mp /T, BN 1 - my/rg
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Thus equation (6U4) becomes

__2q(NRs 1 ( 6 >1/4 Ry 1/2 @g)n/z Rew1/2c08n+1/27\
ko (T, - T) n+1\s” R/ 5 ML - T /T,)

my O\BHL -
{cosz?\ I:l " \Fosm ] +(n+1)Pr —m)u?\ sin®) }

The ratio of equation (68) to equation (39) i1s the ratio of the rate
of heat transfer to the stagnation region of a yawed body to the rate of

heat transfer to the stagnation region of the seme body at zero yaw. This
ratio is

n+i/2

a) __cos™A (T m N z
o) - (Tb/To)n+l { os=A I:l Toeos )\> :]+( +1)Pr e sin27\}

(69)

An enalogous expression cen be obtained for the ratio of Nusselt
numbers, thus,

n -
Nu(d) (D) (;_:) To - Ty (70)

Nu(0) ~ g(0) Ty - Tp

where from equation (63) the recovery temperature, T,., is the solution to

To (A) _
f " xar-- u?z (71)

Tp

However, it should be noted that the assumptions used in the snslysis
tend to be violated when the body temperature approaches recovery condi-

tions. Therefore it should not be expected that equation (71) will yield
accurate values for recovery tempersture.
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There remsins, of course, the problem of determining W. For the
purposes of this report T will be taken as the arlthmetic aversage
between pg(A) and py,, that is, § = [py(A) + 15 1/2.% In this event

equation (69) can be written
alN) _ cosFi/2y {}052% [ *>n+1 ]
- n+1 2
a{0) 1 - (Tp/To) 008

[ () | ) @

which in the case of & relatively cool surface (i.e., Tb/Tocoszk < <1)
becomes

) = cos?2y (cos2n + 2EL pr gin 7\> (73) -
a(0)

Heat Transfer to an Axially Symmetrlic Stagnation Region

The methods used to calculate the rate of heat transfer to a cylin-
drical stagnation reglon can also be applied to the stagnation region of
a spherical body. This analysis is parellel to that for the cylinder at
zero yaw and thus the x axis is taken as the stagnation streamline and
the origin of the coordinate system is placed at the interface between
the assumed incompressible nonviscous region 1 and the viscous, low-
velocity, compressible region 2. For the purpose of obtaining the solu-
tions for velocity in regions 1 and 2 on the stagnation streamline, 1t

%Actually this procedure might better be conslidered the first step in

an iteration method where W is recalculated on the basis of the preced- —
ing calculation of T as a function of x. This refinement is not con-
sidered warranted here where only the gross effects of yaw for angles of
yew well less than 90 are of principal interest. As the angle of yaw
epprosches 90 » the analysis as a whole tends to break down due to the
violation of the several assumptions predlcated on the flow being hyper-
sonic normael to the axis of the.cylinder.
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is most convenient to consider the momentum and continuity equations in
. cylindrical coordinates (sketch (d)). Because of axial symmetry, all

Region | v,r Region 2

Stagnation
streamline

o U, X

_

Body surface

///

Detached Interface

between
shock wave regions | and 2

Region | —Incompressible, nonviscous flow
Region 2- Low-velocity, compressible, viscous flow
Sketch (d)

- properties are independent of the angular coordinete and, accordingly,
the r direction momentum equation becomes

v av)__@_aa[ du | dv )] 3<3v
xR > 3x lM&txte/ et

2E(E-D) aax[“au B*J (74)
Whlle the continuity equation is
s) 10
& (pu) + ; S; (pI‘V) =0 (75)

In region 1 where the viscous iterms are considered identically zero,
the r momentum equation (eq. (T4)) reduces to

i v, L Yo%
e qu+var> dr (76)
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Differentiating equation (76) with respect to r and dropping terms with
factors v and Ov/0x, which vanish on the stagnatlon streamline, gives

2 . 2
é_‘\i azv __ 3
ar> +u Srwi - (77)

Now the continuity equation (eq. (75)) expands to

péu_+ﬂ+pé‘f.=o ('78)
x T or

however, on the axis of symmetry, neglecting terms higher than second
order in v,

il
R i<

(79)

C e

Thus, for incampressible flow, the continuity equation on the stagnation
gtreamline reduces to

du dv
ou S _o 80
ax+2ar ( )

Substituting equation (80} into equation (7T) yields

13V uBzuz_lazp 81
Q) -5 (62)

which, upon differentiating with respect to x, and assuning

% g;g = constant, becomes )
u iﬁl— =0 (82)
ox3

For nonzero values of the velocity u, this differentisl equation has as
a solution

u=u—%-x2+uo‘x+uo (83)
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The value of velocity at the interface, u,, 1s again considered very
small. Thus, fram equation (81), the first derivative of velocity at the
interface is, approximately,

oo [k (84)
b 52

As can be seen fram the solution for velocity, equation (83), the second
derivative of veloclity i1s constant. Therefore the second derivative of
velocity may be evaluated from equation (8l) using conditions just behind
the shock wave, thus,

12 2
R ) (85)
2ug ugPs \ Or s

Substituting for the values of wvelocity, veloclty derivative, and
second pressure derivative behind the shock wave (see Appendix B) yields

v _ 8(3 - 2rg) Uy

Ug 72 -1 RS2 (86)
and
st = - A2 2 1) T (87)

7g +1 Rs

Now in region 2, the viscous terms are retained in equation (TL).
Following the procedure used in sbudying two-dimensional flow (see Appen-
dix A), the r momentum equation, differentiated with respect to r, is
gimplified to

A (wd\__ % 88
Bx<25x2 T a2 (88)

which integrates 1o

98 6211 - sz A (8 )
Crvciaiioe 7
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and, as in the case of the two-dimensional flow,

2 2
wou _ _9px 0
S5 81*22+Ax+'B (90)

The constents A and B are again determined by matching the first and
second derivatives of veloecity at the interface. Thus

A=u0u0“
: (o1)
91
Boug'
B =22
2

At the body Oufdx vanishes, and solving for the coordimate x, from
equation {90) results in

Hollo” / 1% ug'
Xp =t ——a— | L~ [1l+— (92)
5 (@fg < 32 ngug

or?

In Appendix B it is shown that

3% 8 U=
o2 = " 2 (93)
7g + 1 Rg
Thus from equations (86), (87), and (93), it can be shown that
3% ' - 12 f2(y - 1 R
y OB _wo' _ (r - L)7NR(y - 1) BeRs o (oh)

dr2 udzo“? (3 - 27)2 Ho By

which is large compared to unity for any reasonably large value of
Reynolds number {(of the order of hundreds or greater). Therefore, if
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quantities of the order of unity are neglected in equation (92), the
stagnation point coordinste reduces to

xp2 = — 2o (95)

which is identical in form to the relastion for body surface coordlnate
in the two-dimensional flow (eq. (19)).

Next, in region 1 the viscous dissipation and heat-conduction terms
are agein neglected in the energy equation, and terms that vanish by
reasons of symmetry along the stagnation streamline are dropped. Thus
the energy equation for region 1 tskes the same form as equation (23) for
the two-dimensional problem and, since the interface velocity is smell,
the interface temperature T, 1is again spproximately the stagnation tem-
perature Ti.

In region 2, the heat-conduction terms in the energy equation pre-
dominate, and the equation reduces to the three-dimensional Laplece
equation In the variable 74

aZn azn az.q
+ =0 96)
dx2  3y® * dz2 (

In order to £it the boundary conditions on e spherical surface, the
solution is given in terms of spherical coordinstes (¥, 8, snd @). The
general solution which preserves symmetry about the x axis (i.e., which
is independent of @) is

n=A+ .]]?37 + i <cn1"n + 1"—]12&1-> P,(cos 6) (97)
n=1

where Pn(cos @) is the nth order ILegendre polynomial in cos 6. If it
is required that 7 be a constant, N2 OR the surface of the body, equa-
tion (97) can be reduced, on the stagnation streamline, to

R ED @] e
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then expending in terms of ¢ = L .1<< l, results in

Ry,
mn=m + Tl « 2 « . ., . (g9}
" 'l'b L i Y - 7 7 LA NS
o0
vhere L is =~ %L-f }: Cp(2n + l)Rﬁn. Neglecting the gquadratic term in
b '
n=1

€, evaluating 1 at the interface, and transforming to the variable x,
one obtains for equation (99) on the stagnation streamline

=g - (g - ) B (100)

(o] o}

Then the rate of heat transfer to the stagnation point is

- TO

q_=-'q-b' = ——-——no T =L f k ar (101)
X'b xb T

b

which is identical in form with the zero-yaw solution for the two-
dimensional-flow problem (eq. (31)). Note that in Appendix B the second
derivative of pressure given by equation (B18) 1s larger by a factor

of 4/3 than 1t is for the corresponding two-dimensionsl-flow case with
the same shock-wave curvature (eq. (B17)), Thus =xp glven by equa-
tion (95) is changed by the factor (3/h)17 % and the rate of heat trans-
fer to an axially symmetric region becomes

q = [;(7—3'_—5]1/4 (Ef %)112 Eep:_l'f ‘/T‘b * k aT (102)

while the corresponding expression for Nusselt number is

i/ 4 /2 g 2 To
Nu = __§_> He Bp Ceo f k QT (103)
e o) i(m, - m) U
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Examination of Anslysis and Assumpbiens-

A number of agsumptions have been made in the theoretical anslysis,
end it is desirable now to show that the solutions obtained are both
reaelistic and consistent with these assumptions. In particular, it will
be shown that the presumption of & constent second derivative of pressure
normal to the stagnation streamline yilelds solutions for the dlatance
between shock wave and body which are reasonably close to observed values.

AanAmmAT ar LT 222771 T AamAannadandtad Flead e -y tral AnT e sk
MOLULIWLLY ¢ LU WLl UT UCTHULID ULG LCW oL LT (=3 yYoluLlLLy ULILUURLIVUWUL

region 2 is indeed small, as assumed in the analysis, if the Reynolds num-
ber is large encugh for continuum flow conditions. In addition, it will
be shown that for region 2 the viscous-dissipation terms due to the

u and v component velocity derivatives are small compared to the heat-
conduction terms in the energy equation, again provided the Reynolds mm-
ber is not too small. These findings, then, help to justify the manner
in which the momentum and energy equations were trested in the analysis.

Now it is obvious that the assumption of an sbrupt trensition from
nonviscous, convective flow to viscous, conductive flow is a substantial
idealization of the actusl flow.® It is possible, however, to make &
grogs check on the self-consistency of this model by comparing the smount
of heat convected across the interface with the amount conducted to the
body surface. When this is done 1t is found that from a heat-flow polint
of view, the model is self-consistent (i.e., heat convected provides for
heat conducted).

As a final point, a camparison will be made between the analysis of
this paper and the heat-transfer solutions for low-velocity flow given by
Howarth (ref. T7) and Cohen and Reshotko (ref. 8).

Distance between shock wave and body.- Consider first axially
symmetric flow. The velocity in region 1 was found to be (eq. (83))

1t

t Yo
u = u, + ug x+—2-—:vc:2 (10k)

5Strictly speaking, this ldealized model should be considered simply
a first approximation to the correct situation. A second spproximstion
would be to divide the damain between the body and shock wave into three
regions rather than two as was done here.
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Then, the shock-wave coordinate must be

_ . (205)

It can be shown from the relations in Appendix B and equations (84)
and (85) that

’ hUW )
us = .=
(rg + 1)Rg
. _
SR BN 3o S, LS -~ o) BN (106)
P or (7 + 1)Rg
w _ 8(3 - 27) Uy
Yo TUTETIT R
8 8 J

Substituting these relations into equation (105) yields

xg (7, -0 - JB0, - D]
s - (107)
Rs 2(3 = 275)

Note that for 75 = 1.5, us" vanishes and the velocity profile becomes
linear. For this case xg/Rg reduces to (7, - 1)/k.

The actusl distance between the body and the shock wave is, of course,
the sum of xg and x,,. However, it can be ghown from equations (95) and

(107) that xp is small compared to xg for reasonsbly large Reynolds
numbers, and xp will therefore be neglected. The ratio xs/Rg calcu-
lated from equation (10T7) for 7g equal 1.4 is 0.105. Measurements of
xs/Rb taken from spark photographs of high-velocity spheres presented

by Charters snd Thomas (ref. 9) and Dugundji (ref. 10) approach this
value closely at high Mach numbers (i.e., xg/Rp about 0.1l at Mach num-
ber 4). Heybey (ref. 11) has developed a theory which fits the data of
references ¢ and 10 closely and, for the limit of infinite Mach number,
predicts xS/Rb about 0.12. Thus 1t is seen thet at high Mach numbers,

the assumption that the second derivative of pressure is constant and
that the ratio Rb/RS is near unity ylelds results which are consistent

with experimentally observed distances between the shock wave and a
spherical body, as well as with the theory of Heybey .
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It 1s of interest to calculate the shock-wave coordinate for two-
dimensionsl flow a&s well. Recall that the solution for veloclity in
region 1 for this case 1is

H
u = -—ug sinh Cx (108)
and thus
ou = u.' cosh Cx (109)
Ax

The veloclity derivatives at the shock wave and at the interface, given
in Appendix B, are, respectively,

us' = e _EUQ———
(rg + 1)Bg
(110)
ot oo (1T Uayf D)
P oy® (7g + 1)Rg
Then the product Cxg 1is given by
Cxg = arc cosh —2 (111)
N6(r, - 1)
With Cxg known and the velocity at the shock wave
7s = 1
w2 5y (112)
7g T 1
The shock-wave coordinate becomes
X__s_ _ Yg = 1 Cxg (113)

Rg 6  sinh Cxg
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For & 75 of 1.4, Cxg tekes the value 0.75 and since the sinh funec-
tion is very nearly linear over this range, rather close bounds on the
shock-wave coordinste are imposed by

U
55%~ < xgl< [ == (114)
Ug U.o
or
Ys -1 | Xg 7g - 1
L=< JE (115)
2 Rg 6

The exact theoretical solution for xs/RS at 75 = L.% is 0.236.
According to the theory then, a shock wave with given radius of curvature
should be detached from a cylindrical body sbout twice as far as from a
gsphere, assuming RS/Rb s 1.

Magnitude of velocity in region 2.- The y momentum equation in
region 2 was reduced to . .

2 2
) g& = - %QE-%F + poy (116)

The left side of this equation may be approximated by §L (pu) with the
X

presumption that velocity in region 2 is small. Then equation (116) nmay
be integrated to

pu = - —= X pugx + Pl (117)

Solving for ug,, noting that velocity vanishes at X, and substituting
from equations (lh) and (19), one obtains

_2 [ _ 3%
uo—--é-uoX‘b—-3 Pa (118)
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It follows that the retio of interface veloclty to the velocity at the
shock wave is glven by

2 H
se) -8 fo.fl_ _16(%o) T o 1
<u5> 9 pgug U € (118)

which on substituting the relations given in Appendix B for wu,' and ug

‘becomes
E: / — <;9. 512) (120)

It can be seen that for large Reynolds numbers, of the order of
hundreds or greater, the velocity et the interface is small compared to
the velocity at the shock wave. Since the wvelocity in region 2 is every-
where less than at the interface (see eq. (117)), the solutions obtained
for wvelocity are consistent with the assumption that velocity is smell
throughout reglon 2.

Viscous dissipation in region 2.- Although the derivative of wvelocity
vanishes at the body surface, it increases parabolically (see eq. (116))
to ug'! at the interface. Since viscous dissipation terms due to this

velocity shear were neglected in solving the energy equation, it will be
shown that the maximum value of these terms, which occurs at the interface,
is small compared to the heat-conduction terms like o q/ax (note thet by
continuity Bv/ay contributes a dissipastion term of the same magnitude as
du/dx). From equation (30) it can be seen that the term d3n/d is
nearly constant everywhere along the stagnation streamline in region 2.
Then the ratio of differentisl terms in the energy equation is, by
equations (30) and (118),

12 2 T -1
kllo(uo ) _ Mol Ry, < f ° k dT) (121)
(3%n/2%%), ¥ Tp

If equation (121) is evaluated for constant heat capacity and thermal
conductivity proportional to the nth power of temperature, there is

obtained
by (ug')® 2 /R
2ol o 18(m+ 1) (%f;) Pr %)
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Substituting for velocity ratio uy/U, from equations (120) and (BY4)
and for the ratio Rb/xb from equation (21), there results

2 - 1N\2 s/a 1/ 2 3/2 -1/
2t e om(53) (G5 (@)
(52n/3x2)b 7+ 1 7 - 0, s (123)

Once again the square root of Reynolds number is the predominant term for
conditions of continuum flow and thus the viscous dissipation terms in
the energy equation are small compared to the conduction terms in region 2.

Hegt convectlon acroes the Interface, x = 0.- Next consider the ratio

T
of the heat convected across the interfsace, puo\jp © CpdT, to the heat
o

transfer at the stagnation point of the body, -nb'. The value of ug
glven by equation (118) and -n,' from equation (32) yields

T J‘To
o 1y 2 CpdT
pu 2uq'xp 0 2
- = f CpdT = - 3 ; (12k)
T Yo jr°k aT
b

Again evalusting for constant heat capacity and the nth power tempers-
ture function for thermal conductivity, and noting from equations (1h)
and (19) that uo'xp® reduces to -(2Que/p), one obtains

T
- 2% M p(ns 1) (125)
Ty 3

This ratio is the order of unity, and thus the right magnitude of heat
1s convected across the Interface to balance the heat conducted to the

body. The above result also provides a check on the value of %y Wwhich
was obtailned by matching uy' as a boundary condition of the y momen-~
tum equation. } o
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Low-velocity heat transfer.- For hypersonic velocities it was found
that taking shock-wave curvature equal to body curvature on the stagnation
streamline gave gpproximately the correct answer for the distance between
the body and the shock wave, so presumsbly the ratio Ry,/R; should be

taken near unity when calculating the heat transfer gs well. Undoubtedly
this ratic will be somewhat less than unity for low Mach number supersonic
flow, and it is of interest to see what the solutions developed in this
peper will predict for this case (even though the assumptions made in the
analysis are not expected to hold as well for the low-velocity flow con-
ditioms). For this ose it is convenient to express the body coordinste
Xy in terms of (dv/dy)y which by continuity equals -ug'. From equa-

tions (9), (14), and (19)
- Ho
T Jov/en), (126)

then solving for Nusselt number from equations (32) and (3%) for the case
of the cool wall (T, /T, < <1, and n = 1/2) one obtains

p(3v/oy)
Nu = %]}}(—% =O-)-l-7Db —.—u;——o- (127)

The method of boundery-layer solution for low-velocity flow sbout a cylin-
der given in reference 7, ylelds for the derivative of velocity component
normal to the stagnation streamline at the edge of the boundary lsyer, in
the notation of this paper,

dv 3.8US
oV 2 128
Sy e (128)

Substituting in equation (127) results in

Nu = 0.92 Reg ™' Z

where the smsll differences between Mg and pu, are neglected. The con-
stant 0.92 comperes favorably wlth the value 0.95 given by Howarth for
Pr = 0.72. This agreement 1s especially remarkable in the light of the
fact that the analysis of reference T is for constant thermal properties,
while variation in thermsl properties is an essentisl festure of this
analysis.
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Cohen and Reshotko (ref. 8) find that the solution for a campressible
boundary layer gives the followlng relation at the stagnation point of an

axially symmetric body

Nuy _ [ovy '
E— = 0.450 T (129)

for the case of a cool wall and & Prendtl number 0.7. If the redial com-
ponent of veloecity v is taken proportional to ¥y, the ordinate can he
eliminated snd equation (129) reduces to

Nu = 0.440 Dy /p—(m (130)
1)

The factor 0.440 given by Cohen and Reshotko campares favorably with the
factor 0.47 given in equation (127).

HEAT-TRANSFER RESULTS FOR BLUNT SHAPES IN HYPERSONIC FLIGHT

Temperatures in the disturbed flow about vehicles in hypersonic
flight may be sufficiently large to dissociate air molecules-into atoms =
or even to ionize the atoms. At present the chemical reaction rates for
these processes are not known with certainty. Available experimentsl
evidence (ref. 12) indicates that air will be in equilibrium throughout
the stagnation region flow for vehicles in flight at velocities up to
26,000 feet per second, and at sltitudes up to about 200,000 feet. At
much greater gltitudes, the atmosphere is soc rarefied that the chemical
reactions will probably be frozen and the air will behave essentially as
a gas with constant specific heat. These two limiting cases, at least,
can be treated within the framework of the present analytical results. -
For this purpose it will be conwvenient to consider the hesit~transfer rste
expressed in the form of a parameter which is relatively independent of
scale size or density. From equation (102), such a parameter is given —

by
aR o i/ 4 1/2 7
v _ _(s_ 1) (52) f © x ar (131)
VRew/Z \Po N/ o T

where 1t has been assumed that the surface temperasture is negligible
compared to Ty and that the shock-wave curvature equals the body

curvature in the stagnation region. Equatioq\(l3l) applies in the
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spherical case; the rate of heat transfer to a cylindrical stagnation
region may be smeller by the factor (3/4%)1/% according to equation (33).
Note that the integral may be eveluated with the thermal conductivity
coefficients taken at constant pressure, since the pressure is relatively
invariant along a stagnation streamline. The integrals have been cglcu-~
lated graphicaelly using the data given in reference 13 and the results
are shown in figure 1.

For the case where chemical reasctions are frozen, all translational,
rotational, and vibrational modes of energy are conslidered fully excited,
CP/R is taken a constant at 9/2, and the coefficients of viscosity and
thermal conductivity are taken proportional to the hglf power of tempera-
ture. The heat-transfer parameter given by equation (131) for these con-
ditions is shown in figure 2 for flight velocities from 5,000 to 30,000
feet per second.

For the case of chemical equilibrium, Feldman (ref. 1%) has calculated
the densities and stagnation temperatures which occur behind shock waves,
and reference 13 gives values for the coefficients of viscosity and thermal
conductivity. The chemical reactions, which keep the flow in equilibrium,
cause the thermal conductivity to be much larger than in the frozen flow,
but this effect is compensated for by the large decrease in stagnatlion
temperature due to the strong heat sinks created by the reactions. Inci-
dentally Kuo (ref. 15) finds similar compensaetion for the case of heat
transmitted through the boundary layer along a flat plate. Because of
the compensating effects, it is not immediately apparent whether the
integral in equation (131) will be increased or decreased by the dissocia-
tion and ionigzation reactions. In all the cases calculated it is found
that the integral is slightly grester under equilibrium conditions. In
addition, both of the other factors in equation (131) are increased slightly
by the chemical reactions leading to equilibrium. The density ratio across
a normel shock may increase more than a factor of 2 (see ref. 1%), but the
heat-transfer rate varies only as the fourth root of this ratio and is not
strongly influenced. Reference 13 finds that the coefficlent of viscosity
is incressed somewhat at equilibrium, but this also is compensated by the
decrease in stagnation tempersture. The resulting ratio um/uo is

increased slightly, but again the effect on heat transfer is weskened by

the square-root dependence on this factor. The total result of increases
in 811 factors is that the parameter quRemflfz is the order of 30 per-
cent greater for stagnation region flow in equilibrium than for such flow
in which the chemical reactions are frozen. The difference is indicated

by the two curves in figure 2.

The heat transfer calculated for the equilibrium flow is in satis-
factory agreement with the experimental results reported by Rose and
Riddell (ref. 16) as indicated in figure 2. It may be noted that there
is a few percent change in the heat-transfer parameter due to different
ambient temperature and pressure conditions which occur at different
altitudes, but in view of the order of the approximetions inherent in the
theory and. of the 20-percent variation in experimental results, the
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change is not significant enough to be shown in figure 2. The theoretical
results for equilibrium flow also agree with numerlcal integrations of _.
more complete boundery-layer equations, including chemical reaction terms,
which have been made by Fay and Riddell (ref. 17). Thus it is concluded
that the approximate theory presented in this report retains the essential
relationships which influence stagnation-region heat transfer,

In view of the foregolng results, it seems reasonable that the present
theory would also yleld approximstely correct values for the effects of’

e, T i re cshatra +ha nradnndt AF +ha canant AF +ha wretr anole and +he
J W L imal< J eiilweo LIS PIOGuCyY UL TAC Sclanlv UL L yaw aihigic it wilc

retio of the stagnation-region heat flux at yaw to the flux at zero yaw,
for the case where the wall temperature is negligible compared to the
stagnation temperature. This quantity, q(A)/q(O)cos A, equals the ratio
of the heat flux per unit of span normal +o +'h(= stream velocity, to the
same hegt flux at zero yaw. The ratio of the heat flux pexr unit area isg
Just a(A)/a(0), of course. The frozen flow case was calculated from
equation (73) where the Prandtl number was taken equal to 0.75, and this
result is independent of veloclty. The equilibrium flow heat transfer
vas calculated for flight at 26,000 Ffeet per second at 10Q,000 and 150,000
feet altitude from the relation

1/4 _
ps(K) _ /2 ‘/“To(x)k 5 2o {(0)U, 2sin2A
an) | P [ ko (0) ] L T + L
q{0)cos A PL0) Lo(AJCOB A
2 -1 fTO(O)k ar

(132)

which 1s derived from equations (33) and (64). At small angles of yaw,
the effect of yaw 1s to reduce heast flux slightly more in the chemically
frozen flow than in the two equilibrium flow cases shown. This 1is due
primarily to particular variations in the integral of thermal conductivity
with stagnation temperature in the equilibrium flow (fig. 1) and is not
necessarily typical. At larger angles of yaw, the reduction in heat
transfer is about the same in elther case. As shown in figure 3, the
stagnation—region heat flux per unit span 1s reduced approximately by the
factor (cos A)*/2 'at large angles of yaw up to 70°. The correspond.ing
heat flux per unit area is reduced by sbout the factor (cos x)s

The effect of wall temperature on the reduction in heat flux caused
by yaw 1s shown in figure 4. The heat-transfer rates are graphed for
wall temperature to stegnation temperature ratios of 0.2, 0.1, 0.05, 0.02,
0.01, and O for flow in which the Prandtl number is equal to 0.75 and the
dissociation reactions are frozen in a state of no dissociation (note
that vibrational energy may be excited, however, without appreciable
influence on the ratio, q(A)/q(0}). At high ysw angles, the viscous
crosgflovw is the predominant factor contributing to the stagnation-region
heat transfer. The principal effect of high wall temperature is to main-
tain sizable alr temperature, and therefore sizagble viscosity and viscous
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dissipation (see eq. (58)) throughout the crossflow boundary layer.

As a consequence, the stagnation-region heat flux per unit span does not
decrease monotenilcally with increasing yew angle, but goes through minims
as shown in figure 4. As the wall temperature is reduced, the viscosity
near the body gradually becomes negligible compared to the viscosity nesr
the edge of the boundary layer (i.e., at the interface x = 0). The
results are not strongly influenced until the wall temperature is depressed
to the order of 0.1 the stagnation temperature. Then as wall temperature
is further decressed, the heat flux repidly approaches the limiting value
given by equation (73). Because of strong compensating effects, similar
to those which occur 1n the cold-wall case at zero yaw, it is likely that
the effect of wall temperature on heat transfer to yawed shapes in equl-
librium flow will be quite similar to that shown in figure k4.

CONCLUDING REMARKS

The theory for heat flux to the stagnation region of blunt axially
symmetric shapes iIn hypersonic flight, which is developed in this report,
is found to agree favorably with other theoretical results and with avail-
able experimentsl evidence. It is concluded that this theory, though
approximate, preserves the essential functional relationships which influ-~
ence stagnation-region heat transfer. A similar analysis is made for the
heat flux to & cylindrical stagnation region at angle of yaw. It 1s
deduced that wing sweepback should reduce the heat flux per unit area at
the leading edge approximstely by the factor (cos A)¥2, if the wall tem-
berature is held relatlvely cool. This will reduce the cooling required
to alleviate hot spots and the thermal-stress concentrations induced by
heating in the stagnation region at very high-speed flight. The total
stagnation-region cooling required for a given wing span will also be
reduced in this case, since the heat flux per unit span decresses approxi-
metely as (cos A):/2,

Ameg Aeronauticel Laborstory
Netional Advisory Committee for Aeronsutbtics
Moffett Fleld, Calif., May 2, 1955
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APPENDIX A
SIMPLIFICATION OF THE y NOMENTUM EQUATION IN REGION 2

The steady-state, two-dimensionel y momentum equation (see eq. (2)),
differentiated with respect to y, ylelds

puU —— + U — P m—+t PV =3 + Vv —

oy oy ox Taxoy TR Ty TP\

S R EIUCTE) RE O NER NS P

Now on the stagnation streamline the velocity v is identically zero
and therefore all x derivatives of v are zero. Also, all odd order
¥y derivatives of functions like density p, viscosity W, pressure p,
and veloclty u wvanish since, by symmetry, these functions are even.

In addition, it is assumed that near the stagnation streamline the veloc-
ity u 1is so small throughout region 2 that terms with this factor may
be neglected. With thls sssumption an additionsl useful relation can be
deduced from the continuity equation

32y v v v 3 o | av>2

du dp ov dp _
P S + u S + p Sy + v 5 =0 (a2)

Eliminating the terms with factors wu, v, or Jp/dy from equation (A2)
there results, as for incompressible flow,

du av

= ay = 0 (a3)

Note that all derivatives of the sum Ju/dx + Ov/dy are also zero in the
reglons where equation (A3) will hold.

Applying the above considerations simplifies equation (Al) to

@SR SEE D] w
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Now it will be assumed, as is usual, that the viscous flow in the region
of the stagnation point of a blunt body is similar to viscous flow at
the stagnation point of a body with infinite radius of curvature insofar

as the velocity derivatives are concerned (i.e., the principle effect of
the body curvature is to determine the magnitude of the pressure deriva-~
tives). Accordingly, 3%v/dy® and 0%u/dy® will be supposed to venish
in the stegnetion region. Then expansion of the second member of the
right side of equation (Al) yields

o Py
—yzay BN TESSE

in which the only term retained is 2(3 1/3y%) (d3v/dy). Similer expansion
of the lest member of equation (Al) gives

f&.(a’-ua"),,_& a_zu_+__".+ ) (
oxdy \Oy ox Oy \dxdy 3x2 ayz Ixdy. Sy=ox ByBJF

Note that from equation (A3), 3°%u/dy®dx is equivelent to -(3%v/dy®) and
will therefore be neglected. The terms retained in this equetion, then,
are (Ju/ox)(d%v/dxdy) + p(d%v/dydx®). These terms can be combined into

- M ﬁg—). Equstion (AM) thus is reduced to
ox 3x
% 3 *p d
2(:L)--2ee T () (85)

The derivative av/ay vanishes at the surface of the body, so that in
the immediaste region of the stagnation point, equation (A5) tekes on the
approximate from

d 3%y _ o%p
w525 (46)

This expression willl be taken to hold near the stagnation stresmline
throughout region 2.
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APPENDIX B
BOUNDARY VELOCITIES AND PRESSURE DERIVATIVES

For hypersonic Mach numbers, the density ratio across an oblique
shock wave is

Ps 7s + 1

AR (51)
P 75 -1
then the pressure just downstream of the shock is
2p U 2cos20
= 2 ____
Pg = — 2 (B2)

7S+l

where ¢ 1is the acute angle between the shock wave and the normal to the
free-stream velocity vector (see ref. 18). It can also be shown that the
v component of velocity just downstream of the shock is

Vg = 71 Uwsin o cos ¢ (B3)

whlle the wu component on the stagnation streamline is

7s'lU
uS—78+l (-]

(Bl)

In evaluating the derivatives, consider a shock wave with radius of
curvature Rg. Let s be the distance along this profile measured from
the stagnation streamline end x(s) and y(s) be the equations for the
shock~wave coordinates. Then

—_= e = T (35)

while

ap _ % d_xa,,gazp 953114,521’ dlz+§£§+.3_222_y (B6)
4@ ox2 \ds oxdy ds ds y
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In terms of the redius of curvature Rg, the differential eguations for
x(s) and y(s) are
7
= Rs<l - cos8 E)
Rg

Rssin q-r:‘

&
[

& (BT)

dy

J
and at the stagnation streamline (ds = 0) the following conditions hold

dy _
g.. )
ax
as - ©
B8
&, ? (=5)
ds?®
x _ 1
ds2 Rg

o

Then, at the stagnation streamline, equations (B5) and (B6) become

ov) _ dv
By>s T (B9)

)51

Now by continuity and equations (B3) and (B9)

@’%)s ( ) (7s +0;-)Rs (m)
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for two-dimensional flow. For axially symmetric flow the corresponding
relation 1s -

@'u:?s § ) (7 . 1)3 (22)

According to equation (B2) the first right-hand term of equation (BlQ) is

d% - - )'!‘PcaUcoz
ds?2 (73 + l)RSZ

(B13)

while the next term, ~ 4£-<§§> » 18 ewalusted using the x momentum
8

equation (eq. (1)) which for the nonviscous incompressible flow region on
the stagnation streamline reduces to

-a—!i = = pu_ ia}i .
ox ox (B1k)
According to equations (Bll) and (Bl2), equation (Bl4) becomes
3 2(rg - 1) a0,
3 (7, + 1) Ry (B15)
and
_B_B - }"'(78 ~ 1) psUmz (B16)

ox (78 + 1)2 Rg

for the two-dimensional and the axially symmetric flow cases, respectively.
Then the corresponding second partial derivatives of pressure are

B% - - 6(75 - l)PsUwz
&° (74 + 1)°Rs®

(B17)
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and
3% 8(rg - Vegle (518)
2" - 2
or (75 + l)zRs

Note that 745 can have vaelues somewhat different than 1.kt if vibre-
tlonal and dissociatlonal energies are excited at the shock wave. The
results of this eppendix are consistent if g 1s defined by equation (Bl)
from the ratio of densities across the shock wave. When additional energy
modes are excited at the shock wave, this effective value of 7y, 1is not
exactly the ratio of specific heats.

It can be seen that for the casge of s yawed two-dimensionsl body, the
seme relations hold as for the body at zero yaw except that the veloecity
U, 1is replaced by the normel component of veloeity, Ujgcos A. Thus the
yawed two-dimengionsl body has a second derivetive of pressure

%p _ - 6(757* l)pBUéfposzk (B19)
oy? (7g + 1)2352

In the above relstions the radius of curvature of the shock wave Rg
is yet undetermined. In the limit of infinite free-stresm Mach number,
‘the ratio of shock wave to body curvature, Rs/Rb, might be expected to
approach unity as an upper bound. On the other hand, a value of Rs/Rb
consistent with incompressible boundary-layer solutions may be a reason-
able lower bound. In this regard Howarth (ref. 7) reports that for two-
dimensional flow

dv _ 2ug
Ty = _ft; (B20)

which, according to equations (B4) and (Bll), corresponds to a ratio

B .1 (B21)
Rpb 7s -1

Sibulkin (ref. 19), using a similar anslysis finds that

P
EL = 5 (B22)
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for axially symmetric flow. This corresponds to the ratio

Rg L

Rp  3(7 - 1) (223)
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Figure 1.- Integrel of thermal conductivity as a function of temperature.
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Figure 3.- Effect of yaw on heat-transfer rates to the stagnation region
of a blunt eylindrical shspe with a cool wall.
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